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SUMMARY

The paper deals with the numerical solution of fluid dynamics using the boundary-domain integral
method (BDIM). A velocity–vorticity formulation of the Navier–Stokes equations is adopted, where the
kinematic equation is written in its parabolic form. Computational aspects of the numerical simulation
of two-dimensional flows is described in detail. In order to lower the computational cost, the subdomain
technique is applied. A preconditioned Krylov subspace method (PKSM) is used for the solution of
systems of linear equations. Level-based fill-in incomplete lower upper decomposition (ILU) precondi-
tioners are developed and their performance is examined. Scaling of stopping criteria is applied to
minimize the number of iterations for the PKSM. The effectiveness of the proposed method is tested on
several benchmark test problems. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Presently, boundary element methods and their variants are widely accepted for their effective-
ness in the computation of potential problems (heat conduction, elasticity problems, inviscid
fluid flow . . . ), but severe problems are experienced when they are applied to strongly
non-linear problems with prevailing domain-based effects (diffusion–convection problems).
The main problems arise due to limitations concerning varying material properties, dense
system and integral matrices and the computation of domain-based physical effects. Several
techniques were developed to overcome these problems, including the subdomain technique,
multiple reciprocity methods and others that were mainly successful in some special cases.

When dealing with the Navier–Stokes system of equations in velocity–vorticity formulation,
the mentioned boundary element method (BEM) problems threaten to cancel out all the
advantages of the boundary integral methods [1] for fluid flow problems. To overcome these
problems a lot of work has been performed on the application of the subdomain technique and
in the solution of the resulting discretized systems of equations [2], but problems are
encountered in the computation of large fluid flow cases. One of the main causes is the
computational scheme of flow kinematics, based on the vector potential formulation. Although
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it offers an effective way of dealing with boundary conditions on the solid walls (unknown
vorticity), it is very sensitive to the introduction of the subdomain technique [2] and offers very
little memory saving potentials. On the other hand, vorticity and energy transport equations
behave in a stable way no matter how many subdomains are used. It was therefore obvious to
search for a new flow kinematics formulation, one that would capture the advantages in
specifying boundary conditions and gain suitability for the use of the subdomain technique.
The result is the development of a new boundary domain integral algorithm [S& kerget et al.,
‘Computational fluid dynamics by boundary-domain integral method’, submitted to Int. J.
Numer. Methods Eng. (1999)], which combines the ideas of boundary elements, the use of
special fundamental solutions and the concept of a macro element. The algorithm is valid for
both two- and three-dimensional flows. With the aim of making the method computationally
effective, different solution strategies were developed for two-dimensional flows first, and are
described in this paper. They can all be extended to three-dimensional flow computations,
although the memory and computation cost is much higher. Despite this, there are several
interesting applications of the three-dimensional version of the BDIM, ranging from coupling
with vector potential flow kinematics formulation [1] in BDIM, where an effective treatment
of external flows is possible, to conjugate heat transfer problems [Hriberšek and Kuhn,
‘Conjugate heat transfer by boundary domain integral method’, submitted to Eng. Anal.
Bound. Elem. (1999)], where a combination with standard BEM approaches (boundary only
discretization) is straightforward.

The present work continues the presentation of BDIM as developed in [S& kerget et al. (1998)]
and shows how the established velocity–vorticity formulation in BEM can further be devel-
oped in order to obtain a computationally efficient Navier–Stokes code.

2. NAVIER–STOKES EQUATIONS

In the present work, the fluid flow computation is based on an incompressible Newtonian fluid
with a governing set of Navier–Stokes equations
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where 6i is the ith velocity component, xi is ith co-ordinate, D/Dt represents the substantial
derivative, P=p−rgjrj is the modified pressure, p and gj are the static pressure and the
gravity respectively, while T stands for the temperature. The material properties, such as mass
density r, specific isobaric heat cp, kinematic viscosity n and dynamic viscosity h, thermal
diffusivity k=l/rcp, where l is the heat conductivity, are assumed to be constant parameters.
The Boussinesq approximation is considered to model the buoyancy effect in the momentum
equation (2.2) with function F as

F=
r−r0

r0

= −bT(T−T0), (2.4)

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 891–907 (1999)



BOUNDARY-DOMAIN INTEGRAL METHOD 893

where r0 is the reference density at temperature T0 and bT is the thermal volume expansion
coefficient.

In BDIM, the original set of Navier–Stokes equations is further transformed with the use
of the velocity–vorticity variables formulation. As computational results in the present work
are limited to the two-dimensional case, all the equations are written for this case.

With the vorticity vector vi representing the curl of the velocity field, the fluid motion
computation scheme is partitioned into its kinematic and kinetic aspects [S& kerget et al. (1998)].
The kinetics are governed by the vorticity transport equation
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where eij (i, j=1, 2) is the permutation unit symbol (e12= −1, e21= −1, e11=e22=0).
The kinematics are derived for the solenoidal velocity field and is formulated in the form of

a vector–elliptic Poisson’s equation for the velocity vector
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In order to accelerate convergency and stability of the coupled velocity–vorticity iterative
scheme, the false transient approach [3] is applied to the flow kinematic equation
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with a as a relaxation parameter.
Equations (2.3), (2.5) and (2.7) present the leading non-linear set of equations to which the

weighted residuals technique of the BDIM has to be applied.
Integral representation of Equations (2.3), (2.5) and (2.7) can be derived by using integral

representation of a parabolic diffusion–convective equation [S& kerget et al. (1998)]. For all
equations, the time derivative of a field function u (velocity, vorticity, temperature) is replaced
by the finite difference approximation, namely
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with subscript F denoting the time step number. The following integral representations are
obtained:
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In order to successfully apply the elliptic diffusion–convective fundamental solution,
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the decomposition of the velocity field 6j= 6̄j+ 6̂j, where 6̄j is an average constant vector and
6̂j, a perturbed part, is applied in Equations (2.10) and (211). For flow kinematics, the elliptic
modified Helmholz fundamental solution, i.e.

u*=
1

2p
K0(mr),

(u*
(xj

nj=
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2pr2 mrK1(mr), (2.14)

is applied. Notice, when 6̄j=0, Equations (2.12) and (2.13) are equal to Equation (2.14). K0

and K1 are the modified Bessel functions of the second kind and rj(j, s) is the vector from the
source point j to the reference field point s. The parameters m, mv, and mT are defined as
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with bt=1/kDt. Searching for an approximate numerical solution, integral equations (2.9),
(2.10) and (2.11) are written in a discretized manner in which the integrals over the boundary
and domain are approximated by a sum of integrals over E individual boundary elements and
C internal cells respectively. The variation of all field functions is approximated by the use of
interpolation polynomials [S& kerget et al. (1998)]. Interpolation functions, from constant
interpolation [4] to quadratic interpolation [S& kerget et al. (1998)], were applied. The combina-
tion of discontinuous boundary elements and continuous internal cells proved to be the most
stable in obtaining solutions for higher Re value flows.

After applying the discretized integral equations to all subdomain boundary and internal
(for vorticity and heat transport only) nodes, the following implicit matrix systems are
obtained:

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 891–907 (1999)



BOUNDARY-DOMAIN INTEGRAL METHOD 895
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The set of equations (2.18), (2.19) and (2.20), together with selected boundary and initial
conditions [S& kerget et al. (1998)], has to be solved numerically to obtain the solution of a
chosen fluid dynamics problem. To make the computations effective in terms of computation
times and memory requirements, several modifications have to be made. The following
sections present the most important steps in the construction of a fast BDIM numerical code.

3. COMPUTATIONAL PROCEDURE AND EFFICIENCY OF THE METHOD

3.1. Subdomain technique

Integrals in Equations (2.9), (2.10) and (2.11) are written for all the nodes on the boundary
and in the domain, and when applied to large-scale computations they would cause a
prohibitive computational and memory cost to the BDIM. Therefore, the application of the
subdomain technique to all three leading equations is an obvious choice. The idea is to
partition the entire solution domain into subdomains to which the described numerical
procedure can be applied. The final systems of equations for the entire domain are obtained
by adding the sets of equations for each subdomain together, considering compatibility and
equilibrium conditions [S& kerget et al. (1998)] between their interfaces, resulting in a more
sparse system matrices suitable to be solved with iterative techniques [2].

Several versions of subdomains were developed and tested [4]. Although larger subdomains
(more than one internal cell) are more stable when computing higher Re flows, they also result
in densely populated matrices and problems in dealing with non-homogenous material
properties. Therefore, the extreme approach of one cell=one subdomain has to be used in
order to overcome these difficulties. In Table III, the positive influence of such subdomain
division on the population of system matrices (equal to the sparse pattern of the ILU(0)
preconditioner) is clearly recognizable.

3.2. Solution of a non-linear set of BDIM equations

The set of equations (2.18), (2.19) and (2.20) is coupled into a strong non-linear system of
equations. The solution of a chosen problem has to be computed in a time loop, and within
the time loop an iteration process (outer loop) is required to obtain the solution.

In the outer loop (denoted k), the attention must be focused on velocity and vorticity, as
they represent the coupling of the flow kinematics with the flow kinetics. Since vorticity is
always on the right-hand-side of Equation (2.18), velocity is dependent on vorticity distribu-
tion. To avoid problems with convergence it is necessary to relax the vorticity values,

k+1v=Uk+1v+ (1−U)kv, (3.21)

with the underrelaxation parameter U. Two approaches to this task were tested:
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(a) underrelaxation of the entire vorticity field, Ua,
(b) underrelaxation of the pure domain vorticity values (except the values at solid wall, inflow

and outflow boundaries), Ub.

In Table I, the comparison between both approaches is presented. Case 1 stands for a driven
cavity problem (Re=100, Dt=1012, 10×10 mesh), case 2 stands for a natural convection
problem (Ra=104, Dt=1012, 10×10 mesh). The comparison demonstrates that approach (b)
is far more successful. The reason is that the boundary vorticity values from the flow
kinematics are the only boundary conditions for the vorticity transport equation, from which
the domain vorticity values are computed (Equation (2.19)).

3.3. Numerical integration

The evaluation of integrals in Equations (2.9), (2.10) and (2.11) is limited to local integration
over one subdomain only. For the extreme subdomain technique, the numerical integration is
performed locally for one cell and its corresponding boundary elements only, decreasing the
required computational cost for BDIM integrals.

Since the kernels (2.12), (2.13) and (2.14) have steep magnitude variations in the vicinity of
singular points, the polar transformation, together with the division of integrating intervals
into subintervals, has to be applied. For the basic integration procedure, Gaussian quadrature
is used.

The integrals for flow kinematics depend only on geometry and time step increment,
therefore, their evaluation has to be performed only at the beginning of a computation. In
contrast, all transport equations have kernels depending on geometry, material properties and
average velocity values. Since at least velocity values change in each iteration during the
computation, nominal integral values should change too. To avoid the updating of integrals in
each iteration, some simplification has to be performed.

Freezing the value of 6̄, when the velocity within the subdomain does not change more than
the predefined error e	 (Ns is number of subdomains), i.e.

for j=1, . . . , Ns: if
)k+16̄ i

j−k6̄ i
j

k+16̄ i
j

)
Be	 then freeze 6̄ j, (3.22)

is the key to an effective decrease in computational time. If in one subdomain 6̄ is frozen, the
occurring change in velocity components 6i transfers to the perturbed part 6̄i. Freezing the
velocity values does not greatly influence the overall convergence of the outer loop (Table II)
except for large values of e	. The test cases are the same as in Table I, with U=0.1.

Table I. Comparison of underrelaxation techniques Ua and Ub

Ua=0.25 Ua=0.1 Ub=0.1Ub=0.25

113101252161Case 1
93615Case 2 10

Table II. Influence of e	 on the convergence of BDIM

e	=0.0 e	=0.01 e	=0.1 e	=0.25

113 116 137 148Case 1
12111010Case 2
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3.4. Preconditioned Krylo6 subspace methods

To increase the speed of the BDIM computations, iterative methods for the solution of all
three linearized equations have to be used. One of the best possibilities is to use the
preconditioned Krylov subspace methods, since they have low memory demands and can be
quite easily incorporated into the code. Since conjugate gradients squared (CGS) [5] proved
effective in previous BDIM formulations [2], it was chosen as a Krylov subspace solver.

In order to accelerate the convergence of KSM, preconditioning is used, i.e.

[Q ]−1[A ]{x}= [Q ]−1{b}. (3.23)

In many papers and reports it was found that the choice of preconditioner can be of crucial
importance in decreasing the number of iterations (inner loop in BDIM) of KSM. ILU-based
preconditioners proved to be very effective in the BDIM [2]. Apart from ILU(0), block ILU
preconditioners can not be applied to the new scheme of the BDIM due to different system
matrix structure. Since the ILU preconditioning gains on robustness if we allow a certain
amount of fill-in during factorization, a level based fill-in ILU preconditioner was constructed
for the use in BDIM.

3.4.1. Le6el based fill-in ILU decomposition. Level based fill-in ILU (ILU(l), l is level of
fill-in) is already known from other approximation methods, where it was used effectively as
a preconditioner for KSM. The main idea is that the filling entries are classified by the level
of the matrix entry that creates them. If we fix the number of levels to 1 and all the original
entries have level 0, new entries in the preconditioner [Q ], obtained from [A(0)] elements, have
level 1. Limiting fill-in to only one level has a great advantage since there is no need to change
the indirect addressing representation of [Q ] during the factorization process. The fill-in entries
are stored in a new vector together with the known positions in the new [Q ] and the
monitoring of the amount of fill-in is very convenient. Since the positions of the original
entries of [A ] do not change during the outer iteration loop, it is only necessary to determine
the sparse pattern of ILU(l) once, in the first outer iteration, which saves on CPU time.

Increasing the level of ILU(l) preconditioner increases the number of non-zero elements in
the [Q ] matrix. To control the amount of new entries created, a threshold criterion et is
introduced. Here, only the new entries larger than a predefined et fraction of the diagonal
element of [Q ] are included (acla(k) being the kth new entry):

if acla(k)\et acla( jdia(i )) then add acla(k) into [Q ]. (3.24)

Creating a fill-in in ILU(1) with a threshold criterion describes Algorithm 1.

Algorithm 1 ILU(1) decomposition with a threshold criterion

jnrow(1)=0, ia=0, k=0
DO i=2, n

jdi= jdiA(i)
jright= jbgA(i+1)−1
coad=clA(jdi) � et

DO j= jbgA(i)+1,jright
jpoint(jclA(j))= j

ENDDO
DO j= jbgA(i),jdi−1

m= jclA(j)
clA(j)=clA(j)/clA(jdiA(m))

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 891–907 (1999)
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DO l= jdiA(m)+1,jbgA(m+1)−1
k= jpoint(jclA(l))
IF (k.eq.0)THEN

DO m= jnrow(i−l)+l,ia
if(jclA(l) .eq. jacla(m))goto 1

ENDDO
acla(ia)=−clA(j) � clA(l)
IF(acla(ia) .lt. coad)goto 1
ia= ia+1
jacla(ia)= jclA(l)
goto l
ENDDO

clA(k)=clA(k)−clA(j) � clA(l)
1 ENDDO

ENDDO
DO j= jbgA(i)+l,jright

jpoint(jclA(j))=0
ENDDO
jnrow(i)= ia

ENDDO.

In Algorithm 1, the indirect addressing [6] for the representation of matrices was used. For
this purpose four different vectors are needed as follows:

� clA: contains non-zero elements of the matrix [A ],
� jclA: contains coloumn numbers for each element of clA,
� jbgA: ith member gives position of the beginning of the ith row of matrix [A ] in vector clA,
� jdiA: ith member gives position of the diagonal element of ith row of matrix [A ] in vector

clA.

For the representation of the preconditioner another set of the previous four vectors is needed
and additionally one vector (jpoint) which serves as an interface between the original matrix
representation for [A ] and a representation for [Q ]ILU(l).

In cases when problems with convergence occur, additional levels can be added. This is done
simply by rewriting the original matrix [A ] into the representation vectors of [Q ] for ILU(l),
followed by executing the same ILU routine (Algorithm 1) for adding one level of fill-in (level
l+1) to a given preconditioner. The sparse pattern of [A ] and consequently of [Q ]s does not
change if the computational mesh and element connectivity remain the same. Therefore, at the
beginning of the outer loop computation, several ILU(l) representations can be determined
and stored for the later use. Algorithm 2 for this step reads as:

Algorithm 2 ILU(l) loop

1. Set number of ILU levels NL.
2. Transfer: [A ]� [Q ]ILU(0).
3. l=1

3.1. Execution of the basic ILU(l) algorithm on [Q ]ILU(l−1)

3.2. Formulation of the new representation for ILU(l).
3.3. Transfer: [A ]� [Q ]ILU(l).

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 891–907 (1999)
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Table III. Timing and iteration information for ILU(l)

Mesh 50×50 Mesh 80×80Solver

Ra 103 104 103 104

I T I T I T I T

CGS-ILU(0) 67 11.59 175 35.21 94 41.10 264 114.71
CGS-ILU(1) 23 4.99 78 19.47 30 16.69 157 87.79

14 3.53 36 10.39CGS-ILU(2) 19 11.78 60 36.77
CGS-ILU(3) 10 3.04 18 6.05 13 9.63 22 16.26

I=number of iterations, T=CPU time (s).

Figure 1. Effect of ILU(l) on convergence of CGS, mesh 80×80, Ra=10000.

3.4. l= l+1
3.5. IF (l5NL) go to 3.1.

4. Save the representation vectors for formed preconditioners (out of core).
5. End.

Another benefit of the looped creation of the ILU(l) preconditioners is present when ILU(l)
preconditioned KSM exhibit problems with convergence. Then, the inner iteration loop can
simply be restarted by switching to a higher level ILU preconditioner—ILU(l+1).

In the following, a detailed description of the efficiency of developed ILU(l) preconditioners
in the case of the energy transport equation for natural convection in a closed cavity is
presented. Only the first outer iteration solution (for Dt=1012) was computed for the test
problem as it represents the toughest test for the preconditioner (no initial guess available).
Constant elements and cells were used. All computations were performed on a HP 712
workstation.

From the data in Table III, it can be seen that the rate of convergence increases with the
increasing level number in the preconditioner. This is clearly presented in Figure 1, where the
iteration errors, except the last converging one, are plotted. The decrease in the number of
iterations is accompanied by the increase of non-zero entries in [Q ], Table IV. This increases

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 891–907 (1999)
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the CPU time needed for the ILU decomposition, Table V. Imposing a threshold criterion
brings some CPU time savings with little or no additional iterations, however, the threshold
should not be set too tight, Table VI.

3.4.2. Stopping criterion. One of the most important factors in the successful implementation
of iterative methods is the choice of an appropriate stopping criterion. When only one solution
of the system of equations is needed (a common case in potential problems by BEM) and no
reasonable initial guess is available (zero vector taken as initial guess), the standard stopping
criterion for Krylov subspace methods is used, i.e.

{r}KSM
[Q ]−1{b}5e, (3.25)

where rKSM denotes the residual of a KSM, a product of one Krylov iteration step.
In case of non-linear computations in the BDIM, the resulting systems of linearized

equations have to be solved several hundred or even thousand times before the solution of a
problem is achieved. In the BDIM iteration process there is a possibility to use the solution of
the previous outer iteration as the initial guess for CGS. However, in order to preserve the
advantage of a good initial guess, a combination of the standard stopping criterion, Equation
(3.25), with the stopping criterion based on true equation residual norm should be used. In the
following, error plots will correspond to these definitions:

Table IV. Number of non-zero entries in preconditioners

Mesh

80×8010×10 25×25 50×50

111 500(0.07) 286 400(0.03)ILU(0) 4300(1.72) 27 625(0.28)
196 760(0.13) 506 810(0.05)ILU(1) 7361(2.94) 48 338(0.49)

662 045(0.06)256 295(0.16)62 546(0.64)9296(3.71)ILU(2)
349 165(0.22) 906 565(0.09)11 966(4.78) 84 041(0.86)ILU(3)

Table V. CPU time for ILU decomposition

Mesh

80×8050×5025×2510×10

0.080.020.001 0.26ILU(0)
0.28 0.640.01ILU(1) 0.09

0.160.03 0.38ILU(2) 1.02
ILU(3) 0.08 0.53 0.65 1.94

Table VI. Influence of threshold criterion, ILU(3), mesh 80×80

CGS-et=10−1CGS-et=10−3CGS-et=10−6CGS

Iterations 22 23 24 55
33.12CPU time (s) 16.26 15.53 15.97

1.18 1.051.94CPU time (ILU) (s) 1.39
730 267 664 021Non-zero elements 906 565 784 821

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 891–907 (1999)
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Figure 2. Flow kinematics.

� CGS:

err=
{r}CGS

[Q ]−1([A ]0{x}−{b}) , (3.26)

� Equation residual:

err=
[A ]{x}−{b}

{b} . (3.27)

For the stopping criterion the value e=10−6 was imposed. The natural convection test
problem (Dt=1012, steady state, 10×10 subdomains mesh) was used as a model problem for
testing the behaviour of iterative methods.

If we compare the histories of first outer iteration with convergence histories for the 200th
outer iteration (Figures 2 and 3), we can see that CGS errors are quite similar and lead to
roughly the same number of iterations until convergence is achieved. This shows that using
only a good initial guess does not automatically lead to faster convergence of CGS. On the
other hand, Figures 2 and 3 show that when a good initial guess (solution from the outer
iteration number 199) is used, the equation residual norm (3.27) decreases much faster than the
CGS error. To use this fact and to decrease the number of iterations an economical way of
monitoring the residual norms of the original equations is needed.

Monitoring the convergence of the true residual demands an additional matrix–vector
product evaluation, which costs more CPU time. Since the ratio between {r}CGS and {r}
does not change much through the iterations (Figures 2 and 3) an obvious choice is to add an
extra evaluation of r only when the {r}CGS has reached a certain level. In the present case,
the following strategy was used:

Algorithm 3 Scaling of the stopping criterion

1. Let m{r}= ([A ]m{x}−{b})/{b} and m{rCGS}= fCGS/([Q ]−1([A ]m{x}−{b})),
fCGS being the quasi-residual form of a CGS [5], and m the inner iteration number.

2. Set initial guess: {x}=0{x}, 0{x} is the solution from the previous outer iteration.
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3. CGS loop: m=1, maxit.Additional steps at the end of the main CGS loop:
� if (m=1) R=R=e(m{rCGS}/m{r})
� if (m{rCGS}5R) then

compute m{r}, if (m{r}5e) stop iterating,
endif.

This convergence monitoring reveals in practice as very effective since it reduces the number
of iterations of Krylov solvers and preserves the accuracy of the results throughout the outer
iteration loop of BDIM, Figure 4. In Figure 4, curves A and C are results with initial guesses
from the previous outer iteration, and curves B an D are results of using zero initial vector.
This test case was performed on 92×92 subdomain mesh with quadratic macro elements, with
101325 unknowns in system (3.23).

Figure 3. Vorticity transport, CGS-ILU(0), Ra=1000.

Figure 4. Reduction of CGS iterations through scaling of stopping criterion: curves A and B, CGS-ILU(1) for flow
kinematics, curves C and D, CGS-ILU(4) for heat transport.
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Table VII. Natural convection in closed cavity: average Nu numbers

Grashof number

Nusselt number 103 104 105 106 107

1.06 2.01 4.08BDIM 7.99 14.18
1.06 — 4.08 7.99Kaminski [7] 15.09

Figure 5. Natural convection, velocity field: Gr=105 (left), Gr=106 (middle), Gr=107 (right).

4. TEST EXAMPLES

A series of common computational fluid dynamics (CFD) benchmark tests were computed to
test the abilities of the BDIM. The first results for natural convection in a closed cavity are
presented in [S& kerget et al. (1998)] for Ra up to 106. The driven cavity problem for Re up to
1000 and backward-facing step flow for Re up to 400 are also presented in [S& kerget et al.
(1998)] together with the results on mesh size sensitivity. Here, results for these test cases for
higher values of Re and Gr numbers are presented. In all tests, the quadratic interpolation for
boundary elements and internal cells was used.

4.1. Natural con6ection in a closed ca6ity

The natural convection in a closed square cavity was computed for Gr number values in the
range of 103–107, and air (Pr=0.71) was selected for the fluid. The results in the form of
average Nu values for the vertical mid-plane are compared with the results of the finite volume
method [7] and given in Table VII. The computational mesh consisted of 20×20 non-uniform
subdomains. Table VII presents a comparison of average Nusselt values for the vertical
mid-plane with the results of [7] for an infinite side wall conductivity. The agreement of BDIM
results is very good as a mesh with only 400 subdomains was used. Figures 5 and 6 show
velocity and temperature plots respectively for Gr values in the range 105–107.

4.2. Dri6en ca6ity

In [S& kerget et al. (1998)] the driven cavity problem was computed with a 20×20 subdomain
mesh, which allowed accurate flow computation up to Re=1000. Here, a 30×30 non-uniform
subdomain mesh was used and flows up to Re=3200 were computed. Figures 7 and 8 show
the computation results for the selected Re number values. The comparison with benchmark
results [8] shows good agreement, Figures 9–11. Additionally, to the flow pattern of
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Re=1000, for Re=3200 a new large recirculation region is formed near the upper left singular
point, as well as an additional small eddy in the lower right recirculation region.

4.3. Backward-facing step flow

As reported in [1], the computational mesh with 60×12 non-uniform subdomains proved to
be best for the Re=400 computation, therefore, it was also used for the computation of the
flow with Re=800. At this Re value an additional recirculation region is formed at the upper
wall. From the experimental results [9] it is also known that three-dimensional effects influence
the flow at that Re value, therefore, the results of two-dimensional numerical computations

Figure 6. Natural convection, temperature isolines: Gr=105 (left), Gr=106 (middle), Gr=107 (right).

Figure 7. Driven cavity, Re=1000: velocity (left), streamlines (middle), vorticity (right).

Figure 8. Driven cavity, Re=3200: velocity (left), streamlines (middle), vorticity (right).
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Figure 9. Driven cavity, x component velocity profiles.

Figure 10. Driven cavity, y component velocity profiles.

could not be directly compared. Nevertheless, due to the complex flow structure and the
interaction of eddies, the results of the two-dimensional computations still give a good insight
into capabilities of an approximation method.

Figures 12 and 13 show velocity vector and vorticity plots respectively, for 0BxB10 and
0BxB15 (x=15 marks the outflow boundary and 0ByB1).

The lengths of the recirculation regions can be depicted from Figure 14, where the vorticity
values at the upper and lower walls are plotted for the entire channel length. Additionally,
Table VIII compares the data with data from [9].
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Figure 11. Driven cavity, vorticity profiles.

Figure 12. Backward-facing step, velocity field at Re=800.

Figure 13. Backward-facing step, vorticity field at Re=800.

Figure 14. Backward-facing step, vorticity at the lower and upper wall.
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Table VIII. BFS, comparison of recirculation data: P1, lower reattachment
point; P2, upper separation point; P3, upper reattachment point

P1 P2 P3

6.2 4.3BDIM 8.6
7.2 5.3Armaly [9] 9.4

5. CONCLUSION

Computational techniques for the fast computation of CFD problems by the BDIM are
presented. Freezing average velocity values in the computation of integrals, scaling of the
stopping criterion for Krylov subspace methods and the level based ILU preconditioning are
the main tools for decreasing the computational cost of the BDIM. Several computational
results show that the accuracy of the method is preserved even in cases of higher values of Re
and Ra numbers.
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